A-PDF Watermark DEMO: Purchase from www.A-PDF.com to remove the watermark First/Second Semester B.E. Degree Examination, June/July 2013 **Engineering Mathematics – I** Time: 3 hrs. Max. Marks:100 Note: 1. Answer any FIVE full questions, choosing at least two from each part. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. 2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. PART – A (04 Marks) Choose your answers for the following : 1 a. A) $(3 \log 5)^n e^{5x}$ B) $(5 \log 3)^n e^{5x}$ C) $(5 \log 3)^{-n} e^{5x}$ D) $(5 \log 3)^n e^{-5x}$ If $y = 3^{5x}$ then y_n is i) If $y = \cos^2 x$ then y_n is ii) A) $2^{n+1}\cos(n\pi/2+2x)$ B) $2^{n-1}\cos(n\pi/2+2x)$ C) $2^{n-1}\cos(n\pi/2-2x)$ D) $2^{n+1}\cos(n\pi/2-2x)$ Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. The Lagrange's mean value theorem for the function $f(x) = e^x$ in the interval [0, 1] is iii) D) None of these A) C = 0.5413B) C = 2.3C) 0.3 iv) Expansion of $log(1 + e^x)$ in powers of x is _____. A) $\log 2 - x/2 + x^2/8 + x^4/192 + --$ B) $\log 2 + x/2 + x^2/8 - x^4/192 + \cdots$ C) $\log 2 + x/2 + x^2/8 + x^4/192 + \cdots$ D) $\log 2 - \frac{x}{2} - \frac{x^2}{8} - \frac{x^2}{8}$ If $y^{1/m} + y^{-1/m} = 2x$ prove that $(x^2 - 1)y_{n+2} + (2n+1)xy_{n+1} + (n^2 - m^2)y_n = 0$ b. (06 Marks) Verify the Rolle's theorem for the functions : $f(x) = e^x(\sin x - \cos x)$ in $(\pi/4.5\pi/4)$. (06 Marks) c. (04 Marks) By using Maclaarin's theorem expand log sec x up to the term containing x° . d. Choose your answers for the following : (04 Marks) 2 a. The indeterminate form of $\lim_{x \to 0} \frac{a^x - b^x}{x}$ is A) $\log(\frac{b}{a})$ B) $\log(\frac{a}{b})$ C) 1 D) -1 i) The angle between the radius vector and the tangent for the curves $r = a(1 - \cos \theta)$ is ii) 2 C) $\pi/2 + \theta$ A) $\theta/2$ B) $-\theta/2$ D) $\pi/2 - \theta/2$. The polar form of a curve is _____ (A) $\mathbf{r} = \mathbf{f}(\theta)$ (B) $\theta = \mathbf{f}(y)$ (C) $\mathbf{r} = \mathbf{f}(x)$ (D) None of these iii) iv) The rate at which the curve is bending called A) Radius of curvature; B)Curvature; C) Circle of curvature; D) Evaluate. Evaluate $\lim_{x \to 0} \left(\frac{\sin x}{x} \right)^{1/x^2}$ (06 Marks) h Find the angles of intersection of the following pairs of curves, $r = a\theta/(1+\theta)$; $r = a/(1+\theta^2)$. (06 Marks) c. Find the radius of curvature at (3a/2, 3a/2) on $x^3 + y^3 = 3axy$. (04 Marks) d. Choose your answers for the following : 3 (04 Marks) a. If $u = x^2 + y^2$ then $(\partial^2 u)/(\partial x \partial y)$ is equal to i) **A)** 2 **B**) 0 C) 2x **D**) 2y If z = f(x, y) where x = u - v and y = uv then $(u + v)(\partial z / \partial x)$ is ii) A) $u(\partial z / \partial u) - v(\partial z / \partial v)$ B) $u(\partial z / \partial u) + v(\partial z / \partial v)$ C) $\partial z / \partial u + \partial z / \partial v$ D) $\partial z / \partial u - \partial z / \partial v$ If $x = r \cos \theta$, $y = r \sin \theta$ then $\left[\partial(r, \theta) \right] / \left[\partial(x, y) \right]$ is **D**) -1 iii) **A)** r **B)** 1/r In errors and approximations $\partial x / x$. $\partial y / y$, $\partial f / f$ are called iv) B) percentage error C) error in x, y and f D) none of these A) relative error b. If $x^{x}y^{y}z^{z} = c$, show that $\partial^{2}z/\partial x \partial y = -[x \log ex]^{-1}$, when x = y = z. (06 Marks) Obtain the Jacobian of $\partial(x, y, z)/\partial(r, \theta, \phi)$ for change of coordinate from three dimensional Cartesian coordinates to c. spherical polar coordinates. (06 Marks) In estimating the cost of a pile of bricks measured as $2m \times 15m \times 1.2m$, the tape is stretched +1% beyond the standard length. d. If the count is 450 bricks to 1 cu.cm and bricks cost of 530 per 1000, find the approximate error in the cost. (04 Marks) Choose your answers for the following : (04 Marks) a. **B**) 3 **C)** -3 i) If $\vec{R} = xi + yj + zk$ then div \vec{R} A) 0 **D**) 2 If $\overline{F} = 3x^2i - xyj + (a - 3)xzk$ is Solenoidal then a is equal to _____ **A**) 0 **B)** –2 **C)** 2 **D**) 3 ii) If $\overline{F} = (x + y + 1)i + j - (x + y)k$ then \overline{F} . curl \overline{F} is ____. A) 0 B) x + y C) x + y + z D) x - yiii) The scale factors for cylindrical coordinate system (ρ , ϕ , z) are given by iv) A) (ρ, 1, 1) B) $(1, \rho, 1)$ C) $(1, 1, \rho)$ D) none of these Prove that $\operatorname{curl}\overline{A} = \operatorname{grad}(\operatorname{div}\overline{A}) - \nabla^2 A$. (06 Marks) b. Find the constants a, b, c such that the vector $\overline{F} = (x + y + az)i + (bx + 2y - z)j + (x + cy + 2z)k$ is irrotational. c. (06 Marks) Derive an expression for $\nabla \cdot \overline{A}$ in orthogonal curvilinear coordinates. Deduce $\nabla \cdot \overline{A}$ is rectangular coordinates. d.

1 of 2

(04 Marks)

1 (

5	0	Cha	and your analyzers for the fo	<u>]</u>	PART – B			10MAT11
5	a.	choo i)	The answers for the fo	llowing :		-		(04 Marks)
		1)	The value of $\int e^{-\alpha x} dx$ is		A) 1/e	B) –1/e	C) 1/α	D) $-1/\alpha$
		ii)	The value of the integral	$\int_{1}^{\pi/2} \sin^7 x dx is$	A) 35/16	B) 16/35	C) -16/35	D) 18/35
		iii)	The volume generated by A) $(3\pi a^2)/8$	$\sqrt{revolving}$ the ca B) $(3\pi a^3)/8$	ardioid r = a	$(1 + \cos \theta)$ about $(1 + \cos^2 \theta) / \theta$	t the initial line	is
		iv)	The area of the loop of t	he curve $r = a sir$	1 3θ is	A) $a^2/12$; B)	$\pi/12$; C) πa^2	/12 ; D) None
	b.	By ap	plying differential under the	ne integral sign e	valuate $\int_{1}^{\pi/2}$	$\log(1 + y \sin^2 x)$	dv .	(06 Marks)
				0	0	$\sin^2 x$	ux	() - () - () - () - () - () - () - () -
	c.	Evalu	hate of $\int_{0}^{\pi/2} \sin^{n} x dx$ where n	is any integer.				(06 Marks)
	d.	Find t	the length of the arch of the	e cycloid $x = a$ (6)	θ -sin θ); y =	$a (1 - \cos \theta); 0 <$	$\theta \leq 2\pi$.	(04 Marks)
6	a.	Choo	ose your answers for the fol	lowing :				(04 Marks)
		i) [The general solution of the	differential equa	tion (dy/dx)	(y / x) + tan	(y/x) is	
		ii) A iii) 7	A) $\sin (y/x) = c$ An integrating factor for yd Fhe differential equation sa	B) $\sin(y/x) =$ x - xdy = 0 is tisfying the relat	= cx A) x/y ion x = A co	C) $\cos(y/x) = c$ B) y/x C) $\cos(mt - \alpha)$ is	$\frac{2x}{1/(x^2y^2)}$ D) 1	$\cos(y/x) = c /(x^2+y^2)$
		iv) T	A) $(dx/dt) = 1 - x^2$ The orthogonal trajectories	B) $(d^2x/dt^2) =$ of the system give	$-\alpha^2 x$ ven by $r = a\theta$	C) $(d^2x/dt^2) =$ 0 is	$-m^{2}x$ D) ($dx/dt) = -m^2x$
			A) $r^2 = ke^{\theta}$	B) $r = ke^{\theta}$		C) $r^2 e^{-\theta^2} = k$	D) r	$k^2 = k e^{-\theta^2}$
	b.	Solve	$(x\cos(y/x) + y\sin(y/x))$	$y - (y \sin(y / x) -$	$-x\cos(y/x)$) $x(dy/dx) = 0$		(06 Marks)
	c.	Solve	$(1 + y^2) + (x - e^{\tan^{-1} y}) dy /$	$d\mathbf{x}=0.$	00			(06 Marks)
	d.	Prove	that the system of parabola	$a y^2 = 4a (x + a)$	is self orthog	gonal.		(04 Marks)
7	а.	Choo	se your answers for the fol	lowing :				(04 Marks)
		i) F	Find the rank of $\begin{vmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{vmatrix}$: A) 3	B) 2	2	C) 4	D) 1
		ii) T ii iii) I ii iv) T	The exact solution of the s nspection is equal to f the given system of lindependent – solution is given the trivial solution for the solution of the solution for the solution	ystem of equation A) (-1, 1 near equations ven by A) given system of e B) (0, 4, 1)	(10x + y + 1, 1); B) in 'n' varia n; B) n - equations 9x	z = 12, x + 10 (1, 1, 1); bles is consistent -1; C) r - n z - y + 4z = 0, 4y C) (0, 0, 0)	y + z = 12, x =	+ y + 10z = 12 by D) None umber of linearly 5x + y - 6z = 0 is 1, -5, 0).
	b.	Usin	g elementary transformatio	n reduce each of	following n	natrices to the no	ormal form, $\begin{vmatrix} 1 \\ 1 \\ 3 \end{vmatrix}$	1 1 6 -1 2 5 1 1 8
	C.	Test f	or consistency and solve th	a system 2x + x	1 - 10 - 2	x + 2x + 2z = 10	2 -	-237
	d	Apply	Gauss-Jordan method	to solve the	r + z = 10, 5	x + 2y + 3z = 18	x + 4y + 92 = x + 5y + 7z - 52	10. (06 Marks) 2x + y - z = 0
	u.	x + y	+z=9	to solve the	system or	equations, 2x	(+ 5 y + 7 z = 5 z	(04 Marks)
8	a.	Choo	se your answers for the following	owing :				(04 Marks)
		i)	A square matrix A is calle	ed orthogonal if,	A) A	$= A^2 B A =$	A ⁻¹ C) AA	$^{-1} = I$ D) None
		ii)	The eigen values of the m	atrix, $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -2 \\ 2 & -1 & 3 \end{bmatrix}$	$\begin{bmatrix} 2\\ 1\\ 3 \end{bmatrix}$ are A)	2, 3, 8 B) 2,	3,9 C) 2,2,	8 D) None
		iii)	The eigen vector X of the A) $AX = \lambda X$	matrix A corresp B) $\lambda(A - X) = 0$	ponding to e	igen value λ and C) XA - A $\lambda = 0$	l satisfy the equ D)	tation, $A - \lambda I X = 0$
	b.	iv) Show find th	Two square matrices A ar that the transformation, y in inverse transformations.	d B are similar i $y_1 = 2x_1 - 2x_2 - x_3$	f, A) A = x_3 , $y_2 = -4x_3$	B; B) $B = P^{-1}$ $x_1 + 5x_2 + 3x_3$,	AP; C) $A' = B'$ $y_3 = x_1 - x_2 - x_3$; D) $A^{-1} = B^{-1}$ x ₃ is, regular and (06 Marks)
	c.	Diago	nalize the matrix, $A = \begin{bmatrix} 8 \\ -6 \\ 2 \end{bmatrix}$	$\begin{bmatrix} -6 & 2 \\ 7 & -4 \\ -4 & 3 \end{bmatrix}$.				(06 Marks)
	d.	Reduc	e the quadratic form, x_1^2 +	$2x_2^2 - 7x_3^2 - 4x_1$	$x_2 + 8x_2x_3$ * * * * *	into sum of squa	ires.	(04 Marks)
				2	of 2			

First/Second Semester B.E. Degree Examination, June/July 2013 Engineering Physics

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.
2. Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
3. Answer to objective type questions on sheets other than OMR will not be valued.

4. Physical Constants : Planck's constant, $h = 6.63 \times 10^{-34}$ Js, Electron charge, $e = 1.6 \times 10^{-19}$ C

Electron mass, $m = 9.11 \times 10^{-31} \text{ kg}$, Velocity of light, $C = 3 \times 10^8 \text{ mS}^{-1}$

<u> PART – A</u>

Choose the correct answers for the following : 1 a. (04 Marks) If red and blue stars emits radiations of continuous wavelengths, then according to i) Wien's displacement law. B) Red star is hotter than blue star A) Blue star is hotter than red star C) Both stars are at same temperature D) Difficult to conclude. The expression for de-Broglie wavelength for an electron under an accelerating ii) potential V is. B) $\frac{12.26}{\sqrt{V}}$ A° C) $\frac{12.26}{\sqrt{V}}$ nm D) $\frac{12.26}{\sqrt{V}}$ µm A) $\frac{12.26}{\sqrt{V}}$ m A particle moves with velocity 3×10^6 ms⁻¹. The wavelength associated with it is iii) 1 nm. Then group velocity of the particle is, C) $3 \times 10^6 \text{ mS}^{-1}$ D) $1.5 \times 10^6 \text{ mS}^{-1}$ A) $3 \times 10^8 \text{ mS}^{-1}$ B) $3 \times 10^{10} \text{ mS}^{-1}$ According to the Compton effect, the wavelength of X-rays scattered at an angle iv) greater than zero, B) Doesn't change C) Increases A) Decreases D) None of these Derive an expression for group velocity on the basis of superposition of waves. Also obtain b. the relation between group velocity and phase velocity. (08 Marks) Show that Planck's law reduces to Wien's law and Rayleigh-Jeans law under certain c. conditions. (05 Marks) Calculate the de-Broglie wavelength associated with an electron of energy 1.5 eV. (03 Marks) d. 2 Choose the correct answers for the following : a. (04 Marks) The energy of the lowest state in one dimensional potential box of length a = 1 unit is, i) C) $\frac{h^2}{4ma^2}$ $\frac{h^2}{8m}$ D) $\frac{h^2}{2ma^2}$ B) zero ii) For a particle which is not bound to any system and is free, the energy eigen value is, A) zero B) finite but not quantized C) infinity D) finite but quantized If the uncertainty in the position of a particle is equal to its de-Broglie wavelength then iii) uncertainty in its momentum will be, A) $\Delta P \ge \frac{h}{4\pi}$ C) $\Delta P \ge \frac{P}{4\pi}$ D) $\Delta P \ge \frac{h}{P}$ B) $\Delta P \ge \frac{h}{2\pi}$ For an electron to be present inside the nucleus of an atom the uncertainty in the iv) position of the electron must be. A) more than or equal to the radius of the nucleus B) more than or equal to the diameter of the nucleus.

- C) more than the diameter of the nucleus
- D) less than or equal to the diameter of the nucleus.

1 of 4

Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8 = 50, will be t

10PHY12/22

2 Using time independent Schrodinger's wave equation, obtain the expression for the b. normalized wave function for a particle in one dimensional potential well of infinite height. (08 Marks) c. State Heisenberg's uncertainty principle. Write its physical significance. (04 Marks) A spectral line of wavelength 5461 Å has a width of 10^{-4} Å. Evaluate the minimum time d. spent by the electrons in the upper energy state. (04 Marks) 3 Choose the correct answers for the following : a. (04 Marks) i) In the following the ohm's law is, B) $J = \frac{\sigma}{E}$ C) $J = \sigma E^2$ A) $J = \sigma E$ ii) Mobility of electron is, A) Reciprocal of conductivity B) Average electrons drift velocity per unit electric field. C) Flow of electrons per unit cross sectional area. D) Reciprocal of resistivity The dependence of mean free path λ on temperature T is, iii) D) $\lambda \alpha \frac{1}{\sqrt{T}}$ B) $\lambda \alpha \sqrt{T}$ C) $\lambda \alpha^{-1}$ Α) λαΤ According to free electron theory, the free electrons are treated as, iv) A) Rigidity fixed lattice points B) Liquid molecules C) Gas molecule D) None of these Define Fermi energy and Fermi factor. Discuss the variation of fermifactor with temperature b. and energy. (08 Marks) What is mean collision time? Using free electron theory in a metal, obtain an expression for c. electrical conductivity in terms of mean collision time. (06 Marks) d. State and explain Matthiessen's rule. (02 Marks) Choose the correct answers for the following : 4 a. (04 Marks) i) Electronic polarization, A) Independent of temperature B) Increases with temperature C) Decreases with temperature D) None of these The correct relation among the following 4 equations is, **ii**) A) $E = \varepsilon_0 (\varepsilon_r - 1)P$ B) $P = \varepsilon_0 (\varepsilon_r - 1)E$ C) $\varepsilon_r = \chi - 1$ D) $D = \varepsilon_0 (\varepsilon_r - 1)E$ For Ferromagnetic substances, the Curie-Wiess law is given as, iii) C) $\epsilon_r = \frac{C}{(T-\theta)}$ D) $\epsilon_r = \frac{C}{(T+\theta)}$ A) $\in_{r} = \frac{C}{T}$ B) $\in_{r} = \frac{T - \theta}{C}$ In the inverse piezoelectric effect, iv) A) Ultrasonic waves are produced B) Electromagnetic waves are produced C) Microwaves are produced D) None of these What is internal field? Derive an expression for internal field in case of one dimensional b. array of atoms in dielectric solids. (08 Marks) Describe magnetic hysteresis in Ferromagnetic material. c. (05 Marks) d. Explain any three applications of piezoelectric material. (03 Marks)

<u> PART – B</u>

- 5 a. Choose the correct answers for the following :
 - The pumping action in diode laser is by, i)
- HIGHL CONR. A) Optical pumping B) Electrical discharge C) Reverse bias D) Forward bias
 - The expression for energy density in terms of Einstein's coefficients, Г

A)
$$U_{\gamma} = \frac{B}{A} \left[\frac{1}{\frac{h\gamma}{KT} - 1} \right]$$

C) $U_{\gamma} = \frac{A}{B} \left[\frac{1}{\frac{h\gamma}{KT} - 1} \right]$

B)
$$U_{\gamma} = \frac{A}{B} \left[\frac{1}{1 - e^{h\gamma/KT}} \right]$$

D) $U_{\gamma} = \frac{A}{B} \left[e^{h\gamma/KT} - 1 \right]$

Г

iii) In order to see the image of an object recorded by holography. A) It is enough if we just have the hologram.

B) We need the hologram and the reference beam.

B) 2

- C) We need the hologram, the reference beam and the object beam.
- D) We need the hologram, the reference beam and the object beam as well as the object.

C) 0.5×10^{16}

In a laser system when the energy difference between two energy levels is 2×10^{-19} J, iv) the average power output of laser beam is found to be 4 mw. Then number of Photons emitted per second is,

A)
$$2 \times 10^{16}$$

- Describe the construction of He-Ne laser and explain its working with the help of energy b. level diagram and mention few applications. (08 Marks)
- Explain the terms spontaneous emission and stimulated emission. c. (04 Marks)
- d. Explain laser welding and cutting process with diagrams.

Choose the correct answers for the following : 6 a. Superconductors are i)

- A) Ferromagnetic B) Paramagnetic C) Antiferromagnetic D) Diamagnetic All high temperature superconductors are different types of oxides of, ii)
- D) Tin A) Mercury B) Lead C) Copper The quantum of magnetic flux is given by, iii)

A)
$$\frac{2e}{h}$$

B) $\frac{h}{2e}$ iv) Numerical aperture of an optical fiber depends on,

A) Acceptance angle B) Diameter of the fiber C) Critical angle D) None of these

C) $\frac{he}{2}$

- b. Discuss point to point optical fiber communication system and mention its advantages over the conventional communication systems. (06 Marks)
- Define superconductivity and explain Type I and Type II superconductors. c. (06 Marks)
- d. The angle of acceptance of an optical fiber is 30° when kept in air. Find the angle of acceptance when it is in a medium of refractive index 1.33. (04 Marks)

(04 Marks)

(04 Marks)

(04 Marks)

D) 2×10^{19}

10PHY12/22

7	a.	Cho i)	ose the correct answers A crystal of hexagona	s for the following : al lattice has unit cell v	vith sides.	((04 Marks)
		2	A) $a \neq b \neq c, \alpha = \beta =$	$90^\circ, \gamma = 120^\circ$	B) $a = b = c, \alpha = \beta =$	$90^{\circ}, \gamma = 120$)°
			C) $a \neq b = c, \alpha = \beta =$	$\gamma = 90^{\circ}$	D) $a = b \neq c, \alpha = \beta =$	$90^{\circ}, \gamma = 12$	20°
		ii)	In Bragg's spectrome angle,	ter, for every rotation	θ of the turn table, the	detector tu	rns by an
			Α) θ	B) 40	C) 20	D) $\frac{\theta}{2}$	
		iii)	The interatomic distant	nce between the sodiur	m and chlorine atoms in	n sodium cı	ystal is,
		1	A) 5.68 Å	B) 2.81 Å	C) 6.62 Å	D) 5.51 Å	L
		iv)	The interplanar spacin order Bragg reflection	ng in a crystal is 1 Å 1 to take place, the way	and the glancing angle velength of X-rays is,	e is 35°. Fo	r the first
	b.	What	A) 1.147 Å are Miller indices? Ex	B) 0.573 Å xplain the procedure to	C) 1.638 Å find Miller indices wit	D) 0.819 L th an examp	Å ole. 05 Marks)
	c.	Obta	in the expression for in	nterplanar spacing inter	rms of 'a' for a cubic la	attice. (05 Marks)
	d.	Calc	ulate the atomic packir	ng factor for SC, FCC	and BCC lattices.	(06 Marks)
8	a.	Choo i) ii) iii) iv)	An acoustic grating ca A) Drawing lines on a B) Subjecting an optic C) It is only theoretic: D) Setting up a standi The velocity of ultrase A) Bulk modulus decr C) Bulk modulus incr The minimum size of called, A) Pico size The number of carbon A) 60	for the following : an be made by, a glass plate cal grating to pressure al concept. ing waves pattern in a bonic wave through the reases eases f matter below which B) Nano size a atoms present in C_{60} r B) 32	waves of ultrasonic free liquid using ultrasonic. liquid increases as, B) Density decreases D) Volume increases the properties become C) Micro size molecule is, C) 20	(equency es size depo D) Macro D) 12	04 Marks) endent is size
	b.	Desc	ribe with simple illustr	rations, the two method	ds of preparation of nar	no materials	5. 06 Marks)
	c.	Desc can f	ribe a method of meas ind the rigidity modulu	uring velocity of ultra is of the solid.	sonic waves in solids.	Using this	how you 06 Marks)
	d.	Expl	ain quantum structures			((04 Marks)

ጥ ጥ ቾ ቾ

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

1 of 4

10CHE12/22

3	a.	Choose the correct answer :	(04 Marks)
		i) Insoluble corrosion product formed during corrosion process leads	
		(A) To prevent further corrosion (B) Has no effect on corrosion (C) To enhance further corrosion (D) None of these	
		ii) At high hydrogen over voltage, the rate of corrosion	
		(A) Increases (B) Decreases (C) Increases initially and then decreases (D) Remains the same	
		(c) increases initially and then decreases (D) itemains the same.	
		iii) Which of the following factors accounts for lower corrosion rate	
		(A) Large anodic area and small cathodic area	
		(B) Shah anothe area and large cathodic area (C) High temperature	
		(D) High humidity	
		iv) Coustie embrittlement is a classic exemple of	
		(A) Differential aeration corrosion (B) Stress corrosion	
		(C) Differential metal corrosion (D) None of these	
	b.	What is corrosion? Explain the electrochemical theory of corrosion with respect t	o iron.
	C	Explain the type of corrosion occurring in the following cases	(06 Marks)
	с.	i) Presence of small dust particles on iron surface for a long time.	
		ii) Copper nut is contact with iron bolt.	(06 Marks)
	d.	What is anodizing? Explain the anodizing of Aluminium.	(04 Marks)
4	а	Choose the correct answer:	(04 Marks)
-	u.	i) The experimentally determined discharge potential of an electrode is 2.5	7V and its
		theoretical discharge potential is 1.53V, then over voltage is	
		(A) $3.345V$ (B) $-1.04V$ (C) $4.10V$ (D) $1.04V$	
		ii) Electroless plating process is possible only on	
		(A) Catalytically active surface (B) Inactive surface	
		(C) Any surface (D) None of these	
		iii) Which of the following is essential in electroless plating	
		(A) Oxidising agent (B) Reducing agent	
		(C) Anode (D) Electrical energy	
		iv) Driving force in electroless plating process is	
		(A) Power supply (B) Oxidising agent	
		(C) Auto catalytic red-ox reaction (D) None of these	
	b.	Explain the following factors influencing the rate of electro deposit.	
		i) Current density ii) Wetting agent iii) pH	(06 Marks)
	c.	Discuss the process of electroless plating of copper.	(04 Marks)
	d.	Explain the terms : i) Decomposition potential ii) Over voltage.	(06 Marks)

<u>PART – B</u>

5	a.	Choose the correct answer : (04 Marks)
		i) Zone refining technique for purification of solar grade silicon is based on
		(A) Henry's law (B) Newton's law (C) Partition law (D) Phase rule
		ii) Which of the following is not a secondary fuel?
		(A) Coal gas (B) Water gas (C) Producer gas (D) Natural gas
		iii) Methyl tertiary butyl ether is added to the gasoline to
		(A) Increase the octane number (B) Minimizing knocking
		(C) increase the efficiency of iC engine (D) All the above
		iv) Catalysts used in catalytic converters are
		(A) Pt, Pd and Rh (B) Ni, Co and Cr (C) Al_2O_3 and SiO ₂ (D) Zeolite
	b.	What is knocking in IC engines? Explain its mechanism with chemical reaction. Mention its
		(06 Marks)
	c.	What is meant by cracking? Describe the fluidized bed catalytic cracking process. (06 Marks)
	d.	Calculate the calorific value of a sample of coal from the following data: (04 Marks)
		Mass of coal $= 0.95 g$
		Mass of water in copper calorimeter $= 2000g$
		Water equivalent of calorimeter $= 700g$
		Rise in temperature $= 2.8^{\circ}C$
		Sp. heat of water = $4.187 \text{ kJ/kg/}^{\circ}\text{C}$
6	a.	Choose the correct answers : (04 Marks)
		i) In flame photometry, the emitted radiation lies in
		(A) IR range (B) uv range (C) Visible range (D) None of these
		ii) In the estimation of EAS by notentiametry the indicator electrode used is
		(A) Silver-silver chloride electrode (B) Platinum electrode
		(C) Calomel electrode (D) Glass electrode
		iii) Lambert's law states that intensity of monochromatic light decrease exponentially with
		(A) Concentration (B) Path length (C) Time (D) Density
		iv) Gibb's phase rule is applicable to
		(A) Heterogeneous systems (B) Heterogeneous systems is equilibrium
		(C) Homogeneous systems (D) All of these
	b	State the phase rule and explain the terms involved with examples (06 Marks)
	с.	Draw the phase diagram for water system and explain the salient features (06 Marks)
	d.	Write brief note on conduct metric titrations
	ч.	(04 Marks)

10CHE12/22 -

7	a.	 Choose the correct answers : (0 i) Natural rubber is the polymerized form of (0) Chloropropo (D) Sturopo 	04 Marks)				
		(A) Chioroprene (B) Isoprene (C) Propene (D) Styrene					
		ii) A polymer of high optical clarity used in preparation of lenses is (A) Teflon (B) Phenol formaldehyde (C) Neoprene (D) PMMA					
		iii) Which one among is a conducting polymer					
		(A) Aniline (B) Pyrrole (C) Polyacetylene (D) Acetylene					
		iv) Very high molecular weight polymers will have,					
		(A) low Tg (B) High Tg (C) Moderate Tg (D) No Tg					
	b.	What are polymers? Discuss the free radical mechanism of polymerization of ethylene.					
	C.	Give the synthesis and an application of i) Butyl rubber ii) PMMA)6 Marks))6 Marks)				
	d.	Describe the synthesis and applications of Keylar fibre	Marks)				
	u.	Describe the synthesis and apprearions of Revial fibre.	14 Marks)				
8	a.	Choose the correct answers : (0)4 Marks)				
		 i) Secondary treatment of sewage is carried out to reduce, (A) Organic load (B) Inorganic load (C) Destroy microorganisms (D) Nor ii) Complexing agent for spectrometric analysis of nitrates is, 					
		(A) SPADNS (B) Ammonia					
		(C) Phenol Sulphonic acid (D) Phenol disulphonic acid					
		iii) The method used for decalination of water is					
		(A) Zeolite process (B) Lime-soda process					
		(C) Ion-exchange process (D) Reverse osmosis process					
		iv) The indicator used for the estimation of total hardness of a given water sa EDTA method.	mple by				
		(A) Starch (B) Eriochrome black-T (C) Ferroin (D) Methyle or	ange				
	b.	What is desalination? Explain the desalination of water by electrodialysis (0)6 Marks)				
	c.	Explain the argentometric method of determination of chloride in water. Write the involved.	reactions)6 Marks)				
	d.	Explain the terms: i) BOD ii) COD. (0)4 Marks)				

4 of 4

10CCP13/23 USN First/Second Semester B.E. Degree Examination, June/July 2013 Computer Concepts and C Programming Time: 3 hrs. Max. Marks:100 Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet. 3. Answer to objective type questions on sheets other than OMR will not be valued. PART – A 1 Choose the correct answers for the following : a. (04 Marks) i) The term dots per inch (dpi) refers to printer's A) resolution B) speed C) output D) colours ii) is used to identify product and provide information such as price. A) Price check B) Bar code reader C) Numeric digit D) Light sensitive detector is not a computer language. iii) A) Assembly language B) High level language C) Natural language D) Machine level language Which operating system first appeared with IBM PC? iv) A) Windows B) Linux C) Mac OS D) DOS b. What is information processing cycle? Explain four steps with flow chart. (04 Marks) With a neat diagram, explain functions of each units of basic model of computer. (06 Marks) c. d. Convert the following: i) $(10101)_2 = (?)_{10} = (?)_{16}$ ii) $(50)_8 = (?)_{10} = (?)_2$ (06 Marks) 2 Choose the correct answers for the following : a. (04 Marks) is two or more LAN's connected together across large geographical area. i) A) GAN B) LAN C) WAN D) MLAN ii) Temporary storage in main memory is called as A) Buffer B) Secondary memory C) Tirtary memory D) None of these Which of the following unit represents largest amount of data? iii) A) Kilobyte B) Terabyte C) Gigabyte D) Megabyte Identification number of every computer connected to internet is iv) A) Sub net mask B) Gate way C) MAC address D) IP address Explain basic components of a network. b. (04 Marks) Define operating system. Discuss functions of operating system. c. (06 Marks) Explain working of hard disk with a neat diagram. Give advantages and disadvantages. d. (06 Marks) 3 Choose the correct answers for the following : a. (04 Marks) The number 0987 is i) integer. A) octal B) decimal C) hexadecimal D) invalid ii) What kind of language is C? A) Machine language B) Procedural language C) Assembly language D) Object oriented language

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be 1

10CCP13/23

3	a.	iii)	The result after eval	uating the expression	1/2 * 4 is		
			A) 0.25	B) 2	C) 0	D) 0.125	5
		iv)	What is the output if	following program ex	xecuted?		
			main ()				
			{	1			
			printf("%c	([*] , [•] A [*]);			
			}				
	1	F 1	A) 65	B) A	C) "A"	D) Error	
	D.	Expla	ain sonware developr	nent and life cycle.	fellenned and the		(04 Marks)
	C.	what	t are identifiers? Dis	scuss the rules to be	e followed while ham	ling identi	ners. Give
	d	Evel	ipies.	used in seenf() function	on to read unt float ab	ar doublo	(06 Marks)
	u.	data	types	used in scalin() function	on to read unit, noat, en	ar, uoubie a	(06 Marks)
		uata	types.				(00 Marks)
4	2	Cho	ose the correct answer	rs for the following ·			(04 Marks)
-	u.	i)	An operator which a	cts on two operands to	produce result is	operato)r
		1)	A) ternary	B) binary	C) unary	D) comr	olex
		ii)	The modulus operate	or (%) can be used onl	ly for values.	D) comp	
)	A) floating		B) integer		
			C) both integer and t	floating	D) all data type		
		iii)	In C, TRUE is repre	sented by			
			A) true	B) zero	C) non-zero	D) 1	
		iv)	Which of the follow:	ing is not valid assigni	ment statement?		
			A) $i + j = 23$	B) j = 23	C) $j + = 23$	D) $j = 23$	3 + i
	b.	Write	e C program to swap	values of two integer	s without using third v	ariable and	d give flow
		chart	for the same.				(06 Marks)
	c.	Find	the result of each of t	he following expression	ons with $i = 4, j = 2, k =$	= 6, a = 2.	
		i) k	x = i + j	() ii) $j = i/k$	\sim iii) i% = i/3		
		iv) n	n = i + (j = 2 + k)	v) $a = i*(j/=k/$	(2)		(10 Marks)
			_GY				
			XOX				
_				$\underline{PART} - \underline{B}$	6		
5	a.	Choo	ose the correct answer	s for the following :			(04 Marks)
		1)	In c, default return ty	pe of function is	`		
			A) void	B) int	C) float	D) char	
		11)	Parameters used in I	D) less	parameters.	Distus	1
			A) formal	B) local	C) dummy	D) actua	1
		<u>, III)</u>	Every C program mu	tion.	P) standard function		
			C) main function		D) library function	L	
		iv)	Arguments of a func	tion are senarated with	h		
		10)	Alguments of a func	D) apprication (+)	() color (x)	D) blogly a	mana (K)
	h	Waite	A) commute $(,)$	b) semicolon (;)	C) Colon (.)	D) Dialik S	pace (D)
	0. C	Diffe	rentiate call by value	and call by address no	asing function.	nieme	(04 Marks)
	c.	Evol	ain the score of local	and global variables y	with simple example	111151115.	(04 Marks)
	u.	Expla	and the scope of local	and global variables w	viui simple example.		(04 Marks)
6	2	Chor	ose the correct answer	rs for the following ·			(04 Marks)
v	ч.	i)	break statement can	be used in			
		-)	A) if	B) if - else	C) nested if	D) while	•
			×				
				2 of 2	3		

10CCP13/23

6	a.	ii)	Which of the following is not comparator	r operator in C?	
			A) < B) >	C) =	D) !=
		iii)	What is the output if following loop is ex	ecuted?	
			for (i = 1; i < 5; i++); printf ("VTU");		
			A) syntax error	B) VTU	1
		• •	C) VTUVTUVTUVTU	D) VTUVTUVT	UVTUVTU
		1V)	while (0) {printf ("CCP")}, how many the	mes this loop will exe	ecute?
	L-	XX 7 ·	A) 0 B) 1	C) error	D) infinite times
	b.	Write	e C program to find roots of quadratic equa	ation. Consider all po	ossible cases of roots.
	C.	Write	e C program to evaluate following express	ion	(06 Marks)
	•••	111	$x^2 + x^3 + x^4$	1011.	8-
		a	nswer = $1 + x + \frac{x}{2!} + \frac{x}{3!} + \frac{x}{4!} + \dots$ using	g function.	(06 Marks)
	d.	Diffe	erentiate pre-test and post-test loops. Illust	rate your answer with	n a suitable example.
				LOV L	(04 Marks)
7	a.	Cho	ose the correct answers for the following :		(04 Marks)
		i)	The subscript of first item of an array in	C is always	
				B) 0	
		::)	C) depends in size of array	D) not fixed and	assigned at run-time.
		11)	In a variable length string, the string ends	s with delimi	ter.
			$ \begin{array}{c} A) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	C) \ b	D) none of these
		111)	which of the following is correct declara	tion of array in C?	51.
			A) Int marks $[3 + a];$	B) float marks [5]	5.5];
		iv)	C) fint marks $[2 - 2]$, ASCII stands for	D) Int marks [5];	•
		10)	A) American Standard Code for Internat	ional Information	
			B) American Standard Company for Inte	rnational Integration	
			C) American Standard Code for Internati	ional Integration	
			D) American Standard Code for Informa	tion Interchange.	
	b.	Write	e C program to search an element from un	sorted list using bina	ry search. (12 Marks)
	c.	What	t is the difference between a character and	a string containing a	single character?
					(04 Marks)
8	a.	Cho	ose the correct answers for the following :	~	(04 Marks)
		i)	Parallel computing is execution of	of instructions.	
		. >	A) serial B) accurate	C) complete	D) sequential
		ii)	Single sequential flow of control within a	a program is	0.
			A) thread B) instruction	C) program	D) none of these
		iii)	POSIX stands for		
			A) Preliminary Operating System Integra	ation for extended sy	stem.
			B) Portable Operating System Interface	for Unix	
			C) Preliminary Operating System Interfa	ce for Unix	
		•	D) Portable Operating System Integratio	n for Unix.	
		1V)	API stands for		
			A) Application Programming Interface	B) Application F	arameter Interface
	h	Evnl	ain motivating factors for parallelism	D)Application P	rogramming information
	о. С	Expl	ain advantages of threads		(UO Marks)
	d.	Wha	t are Open MP directives which help in sy	nchronization of task	(04 Marks) (2 Explain (06 Marks)
	с.	,, 110	and open the uncertees which help in sy	nomention of task	

USN			10CIV13/23
	F	First/Second Semester B.E. Degree Ex	amination, June/July 2013
E	en	nents of Civil Engineering and	I Engineering Mechanics
Tim	e: 3 l	hrs.	Max. Marks:100
Not	e: 1. 2. 3. 4.	Answer any FIVE full questions, choosing at least two Answer all objective type questions only on OMR shee Answer to objective type questions on sheets other that Assume missing data suitably.	o from each part. et page 5 of the answer booklet. n OMR will not be valued.
		PART _ A	L'
1	a.	Choose the correct answers for the following :	(04 Marks)
		i) Geotechnical engineering involves the study A) Water B) Soil	y of, C) Air D) All of these
		ii) By-pass road is constructed.	C) The D) The of these
		A) Inside the city	B) Over the main road
		C) Around the city	D) None of these
		iii) The part of civil engineering which deals w	ith waste water and solid waste is called,
		A) Water supply engineering	B) Geotechnical engineering
		C) Sanitary engineering	D) Structural engineering
		iv) A bascule bridge is a,	
	1	A) Floating bridge B) Arch bridge C)	Suspension bridge D) Movable bridge
	b.	Write a note on role of civil engineer in infrastruc	tural development. (10 Marks)
	c.	Name the different types of roads as per Nagpur p	olan. (06 Marks)
2	a.	Choose the correct answers for the following :	(04 Marks)
		i) Moment of a force can be defined as the r	product of force and distance from
		the line of action of force to the moment cer	nter.
		A) Least B) Maximum	C) Any D) None of these
		ii) Effect of force on a body depends on,	\odot
		A) Direction B) Magnitude	C) Position D) All of these
		iii) The forces which meet at one point have called	their line of action in different plane are
		A) Coplanar concurrent forces	B) Non coplanar concurrent forces
		C) Non coplanar non concurrent forces	D) None of these
		iv) Couple means two forces acting parallel,	1.5
		(A) Equal in magnitude and in the same dire	ection.
		B) Not equal in magnitude but in the same	direction.
		C) Equal in magnitude but opposite in direct	ction.
	1945 A	D) None of these	N. 7
	b.	Define force and state its characteristics.	(06 Marks)
	c.	Determine the magnitude and direction of the re Fig. O2(g) Use classical method	esultant for the system of forces shown in
		Fig. Q2 (c). Use classical method.	(10 Marks)
		YOKH	15KH
		60	A LINE AND A
			£
		47	
		- John	1
		KSKN 201	-

Fig. Q2 (c) 1 of 4

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

10CIV13/23 (04 Marks)

- 3 Choose the correct answers for the following : a.
 - The technology of finding the resultant of a system of forces is called. i)
 - A) Resultant B) Resolution C) Composition D) None of these ii) Equilibriant in nothing but a resultant,
 - A) Equal in magnitude and in the same direction.
 - B) Equal in magnitude but opposite in direction.
 - C) Not equal in magnitude but in the same direction.
 - D) Not equal in magnitude and opposite in direction.
 - iii) If two forces P and Q (P > Q) act on the same straight line but in opposite direction their resultant is
 - C) Q P A) P + QB) P/QD) P - Q
 - In coplanar concurrent force system if $\Sigma H = 0$ then the resultant is iv) A) Horizontal B) Vertical C) Moment D) None of these (06 Marks)
 - State and prove Varignon's theorem of the moments. b.
 - Two spheres each of radius 100mm and weight 5kN is in a rectangular box as shown in C. Fig. Q3 (c). Calculate the reactions at the point of contacts. (10 Marks)

Choose the correct answers for the following : 4 a. (04 Marks) i)

- Moment of total area about its centroidal axis is A) Twice the area B) Three times the area C) Zero
- D) None of these The centroid of a semicircle of radius R about its centroidal axis parallel to its ii) diametric axis is
 - A) $3R/4\pi$ B) $3R/8\pi$ C) $4R/\pi$ D) $4R/3\pi$
- An axis over which one half of the plane figure is just mirror of the other half which is iii) A) Bottom most axis of the figure B) Axis of symmetry D) None of these
 - C) Unsymmetrical axis
- iv) Centroid of a rectangle of base width b and depth d is B) b/2 and d/2 A) b/3 and d/3 C) b/4 and d/4 D) None of these.
- b. Determine the centroid of a triangle by the method of integration.
- Locate the centroid of the lamina shown in Fig. Q4 (c) with respect to point 0. (10 Marks)

PART - B

Choose the correct answers for the following : 5 a.

(04 Marks)

(06 Marks)

- i) The necessary condition of equilibrium of a coplanar concurrent force system is algebric sum of must be zero. A) Horizontal and vertical forces
 - B) Moment of forces
 - C) Horizontal, vertical and moment of forces D) None of these

2 of 4

Q5 (a) Contd....

- ii) In non concurrent force system if $\Sigma H = 0$, $\Sigma V = 0$ then the resultant is A) Horizontal B) Vertical C) Moment D) Zero
- iii) The force which is equal and opposite to the resultant is A) Resultant force B) Force C) Equilibriant D) None of these
- The procedure of resolution is iv)
 - A) To find the resultant of the force system
 - B) To break up an inclined force in to two components
 - C) To find the equilibriant
 - D) None of these
- Determine the reactions at the point of contact for the sphere shown in Fig. Q5 (b).(06 Marks)

- c. Determine the angle θ for the system of strings ABCD in equilibrium as shown in Fig. Q5 (c). (10 Marks)
- Choose the correct answers for the following : 6 a.
 - i) Statically determinate beams are,
 - A) The beams which can be analyzed completely using static equations of equilibrium
 - B) The beams which can be without using static equations of equilibrium
 - C) Fixed beams
 - D) None of these
 - Fixed beams are. ii)
 - A) One end is fixed and the other is simply supported
 - B) Both ends are fixed
 - C) Both ends are roller supported
 - D) One end is fixed and the other is free.
 - The number of reaction components at fixed end of a beam are. iii) A) 2 B) 3 C) 4
 - U.D.L. stands for iv)
 - A) Uniform dead load
 - C) Uniform door load
- B) Uniform distributed load
- D) All of these

Explain different types of supports.

Determine the reactions at the support for the beam shown in Fig. Q6 (c).

Fig. Q6 (c)

(04 Marks)

D) None of these

(06 Marks)

(10 Marks)

7 a. Choose the correct answers for the following :

i)

iv)

- Angle of friction is angle between
 - A) the incline and horizontal
 - B) the normal reaction and friction force
 - C) the weight of the body and the friction force
 - D) Normal reaction and the resultant.
- ii) The force of friction developed at the contact surface is always
 - A) Parallel to the plane and along the direction of the applied force
 - B) Perpendicular to the plane
 - C) Parallel to the plane and opposite to the direction of the motion
 - D) All of these.
- iii) The maximum inclination of the plane on which the body free from external forces can repose is called
 - (A) Cone of friction B) Angle of friction C) Angle of repose D) None of these
 - The force of friction depends on
 - A) Area of contact
 - B) Roughness of the surface
 - C) Both area of contact and roughness of the surface
 - D) None of these.
- b. State the laws of static friction.
- c. A uniform ladder of length 15m and weight 750N rests against a vertical wall making an angle of 60° with the horizontal. Co-efficient of friction between the wall and the ladder is 0.3 and between the ground and the ladder is 0.25. A man weighing 500N ascends the ladder. How long will he be able to go before the ladder slips? (12 Marks)

8 a. Choose the correct answers for the following :

- i) The unit of radius of Gyration is A) mm B) mm²
- ii) The moment of inertia of an area about an axis which is in a plane perpendicular to the area is called
 - A) Radius of Gyration

B) Polar moment of inertiaD) None of these

C) mm^3

- C) Second moment of areaD) None of theseThe moment of inertia of a circle with 'd' as its diameter about its centroidal axis
- A) $\frac{\pi D^2}{32}$ B) $\frac{\pi D^2}{64}$ C) $\frac{\pi D^4}{32}$ D) $\frac{\pi D^4}{64}$ iv) The moment of inertia of a square of side 'b' about an axis through its centroid is
- A) b_{12}^4 B) b_{8}^4 C) b_{36}^4 D) b_{12}^3
- b. State and prove parallel axis theorem.
- c. Find the moment of inertia of the region shown in Fig. Q8 (c) about horizontal axis AB and also find the radius of Gyration about the same axis. (10 Marks)

A MARCH B

4 of 4

(04 Marks)

(06 Marks)

D) mm^4

(04 Marks)

. t	JSN			10	EME14/24
-		ł	First/Second Semester B.E. Degree Ex	xamination, June/July	2013
			Elements of Mechanic	al Engineering	
ઝંડ	26				10
racti	Tim	e: 3	nrs.	M	ax. Marks:100
malp	2	1			A
d as 1	Not	te: 1	Answer any FIVE full questions, choosing a	t least two from each part.	4.
eated		2.	Answer all objective type questions only on O	MR sheet page 5 of the answer then the other than OMP will not be	ver booklet.
ges. be tr		5	Answer to objective type questions on sneets	oliner inan Olvik wai noi be	vaiuea.
vill l				A'O	
lank 50, v			PARI-A	00	
ng b -8 =	1	a.	Choose the correct answers for the following :		(04 Marks)
42+			i) Lunar is form of energy	and the second s	
rem eg,			A) Stored	B) Transitional	
itten			() Celestial	D) Capital	
s on s wr			A) Sufficient heat	B) Insufficient heat	
line			C) Total heat	D) Incomplete heat	
ross quat			iii) Steam pressure is in water tube boild	ers	
al cı or e			A) Low	B) High	
gon/ nd/			C) Medium	D) Absolute	
/ dia tor a			iv) Feed check valve is a boiler mounting for $A = S = S = S$		
draw aluat			A) Safety C) Testing	B) Operation	
ily o				(D) security	
al to		b.	Compare and contrast renewable and non renewa	ble energy sources.	(06 Marks)
npre		c.	Enumerate the advantages and disadvantages of s	superheated steam.	(04 Marks)
s, co on, a		a.	Explain briefly air preneater, superneater and Ch	imney with respect to bollers.	(06 Marks)
wers			. A	N. A.	
ans ntifi	2	a.	Choose the correct answers for the following :	50	(04 Marks)
/our Fide			i) An example for a reaction turbine is	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ng y lo gi			(A) Laval turbine	B) Curtis turbine	
pleti ealir		p	(i) The weight to power ratio of a gas turbine	D) Parson's turbine	2
reve		$\langle \rangle$	A) High	B) Less	-0
On 6 Any			C) Moderate	D) Equal	· O -
			iii) Draft tube is a steel pipe	· •	
ie: Note:	>		A) Closed	B) Open	N/
IT N			C) Converging	D) Diverging	
ortar			(V) Kaplan turbine is a head turbine	D) Low	
mpc			C) Medium	D) Simple	
Ι		1			
		b.	With a neat sketch, explain the working principle	ot an impulse turbine.	(06 Marks)
		C.	List any four unterences between closed cycle ar	ia open cycle gas turbines.	(04 Marks)

d. Define radial flow, axial flow and mixed flow with respect to water turbine.

(06 Marks)

10EME14/24

3	a.	Choose the correct answers for the following	:	(04 Marks)	
		1) Flywheel is used as an energy			
A.		A) Receiver	B) Keservoir		
SB	7	C) Mixer	D) Multiplier		
all all	L	11) Mechanical efficiency of a four-stroke e	engine is		
	ć	A) Medium	B) High		
	. 84	C) LOW	D) Balanced	\sum	
		in) The output shaft in IC engines is			
		A) Camshaft	B) Crankshaft		
		C) Rotary shaft	D) Axial shaft		
		iv) In C.I. engines, charge means	Close and Close		
		A) Air and fuel	B) Only fuel		
		C) Air and water	D) Only air		
		YOn	GIR		
	b.	List any four differences between two-stroke	and four-stroke engines.	(04 Marks)	
	c.	. A six cylinder 4-stroke I.C. engine develops 50 kW of indicated power at me The bore and stroke length are 70mm and 100mm respectively. If the en 3700 rpm, find the average misfires per unit time.			
	d.	Draw a schematic diagram of I.C. engines and	name the parts.	(06 Marks)	
			5		
4	a.	Choose the correct answers for the following	. 55	(04 Marks)	
		i) Brine is an example for	6	()	
		A) Coolant	B) Effluent		
		C) Deodourant	D) Refrigerant		
		ii) The value of COP is greater than	D) Reingerunt		
		A) Infinity	B) Ten		
		C) Unity	D) Hundred		
		iii) A thermostat in $A C$ is used to control	D) Hundred		
		A thermostat in A.C. is used to control	D) Tomporatura		
		A) Pressure	D) Efficiency		
	100	C) volume	D) Efficiency		
		(iv) The viscosity of an ideal refrigerant sho	uld be		
		A) Low	B) High		
		C) Moderate	D) Unity		
	b.	Mention the uses of any four refrigerants.		(04 Marks)	
	c.	With a neat sketch, explain the working of a v	apour absorption refrigerator.	(06 Marks)	

d. List the differences between vapour compression refrigeration and vapour absorption refrigeration. (06 Marks)

PART – B

5	a.	Choose the correct answers for the following :		(04 Marks)
		i) Compound side swiveling method is used to	o produce	and the second s
$Q_{\mathcal{A}}$		A) Hole	B) Threads	
	4	C) Knurl	D) Taper	<u></u>
		ii) Lathe Dog is		\sim
		A) A part	B) A component	
		C) An accessory	D) An assembly	
		iii) is an operation to produce a conical s	urface at the end of a predrilled h	nole
		A) Counter Boring	B) Counter sinking	
		C) Tapping	D) Reaming	
		iv) The supporting section (core) of a drill is ca	illed	
		A) Web	B) Tang	
		C) Land	D) Margin	
	b.	With a neat sketch, explain the principle and op-	eration to produce a 'taper' on la	athe by tail
		stock set over method.		(06 Marks)
	c.	Differentiate between cross slide and compound	slide.	(04 Marks)
	d.	With a neat sketch, explain the operation of a rad	lial drilling machine.	(06 Marks)
		\times \checkmark \checkmark		
(-		5	
0	a.	Choose the correct answers for the following :	1	(04 Marks)
		1) Conventional milling is also called	D) Climb milling	
		A) End mining () Parishand sulling	B) Climb milling	
		C) Peripheral milling	D) Up milling	
		1) The mining process used to produce $v = 0$	D) Slot milling	
		C) Angular milling	D) Slob milling	
		iii) Elint is an example for a shrasive	D) Slat mining O	
		A) Artificial	B) Natural	
		C) Strong	D) Week	
	, and	iv) The bond used for manufacturing elastic ar	inding wheels is called	
	C	(A) Shellac	B) Vitrified	<i>つ</i> .
1		C) Resinoid	D) $Oyy = chloride$	-0-
\sim)	c) Resilord	D) Oxy - emonde	
	b	Differentiate between up milling and down milli	ng	(06 Marks)
	0.	Billerentiate between up mining and down minin	ш <u>Б</u> .	(00 Marks)
	c.	List any four differences between horizontal mill	ling machine and vertical milling	machine
			5	(04 Marks)
	d.	With a neat sketch, explain the principle of centr	eless cylindrical grinding.	(06 Marks)

10EME14/24

7	a.	Choose correct answers for the following :	(04 Marks)			
62		A) WeldingB) BrazingC) SolderingD)Electroplating				
	L-C	 ii) is used as flux in welding, A) Sodium phosphate B) Sodium carbonate C) Sodium silicate iii) A good lubricant should be, A) Highly volatile B) Non-volatile 				
		C) Less volatileD) Moderately volatileiv)Collar bearing is an example for, A) Radial bearing C) Thrust bearingB) Journal bearing D) Sleeve bearing				
	b.	With a neat sketch explain a foot step bearing.	(06 Marks)			
	c.	Explain splash lubrication with a neat sketch.	(06 Marks)			
	d.	Differentiate between welding and brazing.	(04 Marks)			
8	a.	Choose correct answers for the following : i) V-belts are, A) Repairable B) Not repairable C) Quickly repairable D) Easily repairable ii) Belts transmit motion by, A) Friction B) Abrasion C) Suction D) Expulsion iii) The surface of the tooth below the pitch circle is called, A) Clearance B) Flank C) Backlash D) Face iv) Module indicates the of the pitch, A) Whole B) Fraction C) Total D) Integration	(04 Marks)			
	b. Differentiate between an open belt drive and cross belt drive. (04 Mar					
2	c.	Enumerate the advantages and disadvantages of gear drives.	(06 Marks)			

d. A V-belt drive transmits 10 kW power at 240 rpm. The grooved pulley has a mean diameter of 1.2 m and groove angle of 45°. Taking $\mu = 0.3$ and angle of lap equal to π radians, determine the tensions on each side of the belt. (06 Marks)

* * * * *

1 of 4

10ELE15/25

2	a.	Choose the correct answers for the followi	ng :	(04 Marks)			
		1) The law that finds application in electro (A) Faraday's law B) Coulomb's law	V = C Obm's law D) I	enz's law			
		i) According to Faraday's law of electro	magnetic induction an emf is	induced in a			
		conductor whenever it	magnetie madetion un enn is				
		A) lies in a magnetic fieldC) cuts the magnetic flux	B) lies perpendicular to the m	agnetic field			
		D) moves parallel to the direction of m	agnetic field.				
		iii) "In all cases of electromagnetic induct	ion, an induced voltage will cau	se a current to			
	C,	flow in a closed circuit in such a direct	ion that the magnetic field which	h is caused by			
		that current will oppose the change	that produces the current" is	s the original			
		Δ) Lenz's law	B) Faraday's law of magne	tic induction			
		C) Fleming's law of induction	D) Ampere's law	the modellon			
		iv) Which law is synonymous to the occur	rence of diamagnetism				
		A) Ampere's law B) Maxwell's law	C) Coulomb's law D) I	enz's law.			
	b.	State and explain Faraday's laws of electro	magnetic induction.	(08 Marks)			
	с.	Derive the expression for energy stored in a	an inductor.	(08 Marks)			
			(0)	(00 111111)			
3	a.	Choose the correct answers for the following	ng :	(04 Marks)			
		i) The form factor is the ratio of	00				
		A) average value to rms value	B) rms value to average val	ue			
		C) peak value to average value	D) peak value to rms value				
		ii) In an $R - L$ series circuit the pf is					
		A) leading B) lagging	C) zero D) ui	nity			
		iii) The power factor of an ac circuit is equ	alto				
		A) cosine of the angle	B) sine of the phase angle				
		C) unity for a resistive circuit	D) unity for a reactive circu	ut			
		iv) In a pure capacitive circuit, the current					
		A) lag behind the voltage by 90°	B) lead the voltage by 90°				
	h	C) remain in phase with voltage	D) None of these	nogistanaa an			
	0.	inductance and a capacitance connected in	series	(10 Marks)			
	C	125 volte at 60Hz is applied across a c	series.	(IU Marks)			
	C.	inductive resistor. The combination carries	a current of 2.2A and causes a	nower loss of			
		96.8 w in the resistor. Power loss in the ca	pacitor is negligible Calculate	the resistance			
		and capacitance	puentor is negligible. Culculate	(06 Marks)			
4	a.	Choose the correct answers for the following	ng:	(04 Marks)			
		i) In a 3 phase balanced star – connected	load, neutral current is equal to	· 0_			
		A) Zero B) I_P	C) I_L D) Ur	predictable			
		ii) The relationship between the line and	phase voltage of a delta conne	cted circuit is			
		given by					
		A) $V_1 = V_P$ B) $V_1 = \sqrt{3} V_P$	C) $V_{I} = V_{P}$ D) V	$I_{\rm L} = \frac{2}{2} V_{\rm P}$			
			$\sqrt{2}$	π			
		iii) The power in a 3 phase system is give	en by $\sqrt{3}$ V _L I _L cos ϕ , where ϕ	is the phase			
		angle between		1			
		A) line voltage and line current	B) phase voltage and phase	current			
		C) line voltage and phase current	D) phase voltage and line cu	urrent			

- iv) Three equal impedances are first connected in delta across a 3 phase balanced supply. If the same impedances are connected in star across the same supply
 - A) phase currents will be one third B) line currents will be one - third
 - C) power consumed will be one third D) None of these
- b. Derive the relationship between a line current and a phase current and a line voltage and phase voltage related to a star connected load. (07 Marks)
 - Mention different types of wiring used in domestic dwellings. (03 Marks)
- d. Explain construction and working principle of induction type single phase energy meter. (06 Marks)

PART - B

5 Choose the correct answers for the following : a.

(04 Marks)

(04 Marks)

- The emf generated in a dc generator depends upon i)
 - A) brush contact drop C) number of parallel paths
- B) commutation D) terminal voltage
- ii) The dc generator having residual magnetism gives zero induced emf, the speed will be
 - A) zero B) very small C) rated one D) any
- iii) The field coils of a dc machine are made of A) carbon B) copper C) mica D) steel

iv) The rotating part of a dc machine is called the A) rotor B) field C) armature D) stator

b. The emf generated in the armature of a shunt generator is 625 volts, when delivering its full load current of 400 A to the external circuit. The field current is 6 amp and the armature resistance is 0.06Ω . What is the terminal voltage? (08 Marks)

c. A 220 volts series motor is taking a current of 40 amperes. Resistance of armature 0.5Ω , resistance of series field is 0.250hm. Calculate i) Voltage at the brushes ii) Back emf iii) Power wasted in armature iv) Power wasted in series field. (08 Marks)

a. Choose the correct answers for the following :

i) Transformer is used

C) on dc

6

- A) to step up the voltage
- B) to step down the voltage
- D) to step up or step down the voltage
- ii) A transformer does not transfrom
 - A) power B) voltage
- iii) In a transformer, electrical power is transferred from primary to secondary A) through air B) by magnetic flux
 - C) through insulating medium
- iv) The two windings of a transformer are
 - A) conductively linked
 - C) not linked at all

D) impedance

- D) none of these

C) current

- B) inductively linked
- D) electrically linked
- 10 Th b. Explain principle of operation of a single phase transformer and derive the EMF equation. (08 Marks)
- c. A single phase, 20 KVA transformer has 1000 primary turns and 2500 secondary turns. The net cross sectional area of the core is 100cm². When the primary winding is connected to 500V, 50Hz supply, calculate i) the maximum value of the flux density in the core ii) the voltage induced in the secondary winding and iii) the primary and secondary full load currents. (08 Marks)

10ELE15/25

4 of 4

USN

10ELN15/25

First/Second Semester B.E. Degree Examination, June/July 2013 Basic Electronics

Time: 3 hrs.

Max. Marks:100

Note:

Answer any FIVE full questions, choosing at least two from each part.
 Answer all objective type questions only on OMR sheet page 5 of the answer booklet.
 Answer to objective type questions on sheets other than OMR will not be valued.

PART – A

1	a.	Choose the correct answers for the following :		(04 Marks)
		i) When forward – biased, a diode	02	
		A) blocks current	B) conducts current	
		C) has a high resistance	D) drops a large voltage	
		ii) The knee voltage of a Silicon diode is		
		A) 0.3 V B) 0.5 V C) 0.	7 V D) None of	f these
		iii) The ripple factor of half wave rectifier is about	ut	
		A) 40.6 B) 0.46 C) 1.	21 D) 81.2	
		iv) The rms value of a load current in case of a fi	all wave rectifier is	
		Λ π μ Im	n Im	
		A) $\frac{1}{2}$ B) $\frac{1}{2}$ C) $\frac{1}{\sqrt{2}}$	$=$ D) $ \pi$	
	b.	Deduce the following for HWR		
		i) Irms ii) Idc		(04 Marks)
	c.	With a neat circuit diagram, explain the working	principles of full wave bridge	rectifier.
				(06 Marks)
	d.	Draw the circuit of full wave rectifier and	show that the ripple factor	= 0.48 and
		efficiency = 81%.	(\bigcirc)	(06 Marks)
			6	
2	a.	Choose the correct answers for the following :	40	(04 Marks)
		i) The current relationship between two current	gain in a transistor is	
		A) $\beta = \frac{\alpha}{\alpha}$	B) $\beta = \frac{1+\alpha}{2}$	
		$1-\alpha$	$D p^{-1-\alpha} $	
		(C) $\beta = \frac{1-\alpha}{\alpha}$	D) $\beta = \frac{\beta + 1}{\beta}$	
		$1+\alpha$	β	
		ii) The β_{dc} of a transistor is its		
	C.	A) current gain	B) voltage gain	
		C) power gain	D) internal resistance	
		iii) In a transistor the current conduction is due to	o carries.	
		A) majority	B) minority	
		C) both (A) and (B)	D) None of these	
		iv) In a transistor circuit,		*
		A) $I_E = I_C$ B) $I_E > I_C$ C) I_E	$< I_C$ D) $I_E << 1$	I _C
	b.	Draw input and output characteristics of an NPI	N transistor in common base	configuration
		and explain.		(08 Marks)
	c.	Calculate the value of I_C , I_E and β_{dc} for a transist	or with $\alpha = 0.99$ and $I_B = 110$ µ	uA.
	1			(04 Marks)
	d.	Obtain the relation between ' α_{dc} ' and ' β_{dc} '.		(04 Marks)

10ELN15/25

3	a.	 Choose the correct answers for the followin i) The intersection of a dc load time and the A) Q - point C) Operating point 	(04 Marks) a transistor is called	
lor j		 a) For an emitter follower, the voltage gain A) unity C) less than unity iii) The best biasing stability is achieved by A) fixed C) voltage divider iv) In self bias or emitter bias circuit A) inductor 	B) greater than unity D) zero using biasing circuit. B) collector to base D) None of these is connected between emitt B) capacitor	er and ground
		C) resistor	D) transformer	
	b.	Explain the concepts of base bias techniques	s using NPN transistor.	(10 Marks)
	c.	Calculate the Q – point values for the	e circuit of collector to	base circuit. Given
		$R_{\rm B} = 100 \text{ K}\Omega$, $R_{\rm C} = 10 \text{ K}\Omega$, $v_{\rm CC} = 12 \text{ v}$ and	$\beta_{dc} = 100.$	(06 Marks)
4	a.	Choose the correct answers for the followin	g:	(04 Marks)
		i) A SCR has number of layers		
		A) one B) two	C) three	D) Four
		1) The minimum point in VI characteristic	of UJT is known as por	Int
		A) negative B) valley	C) latening	D) conducting
		A) current B) voltage	C) power	D) None of these
		iv) The relaxation oscillator uses	c) ponter	D) Home of these
		A) MOSFET B) SCR	C) BJT	D) UJT.
	b. с.	Draw two transistor equivalent circuit of S various regions of operations. Explain with suitable diagram and wavef oscillator.	CR. Also plot V – I charac forms, how UJT can be us	teristics and explain (10 Marks) sed as a relaxation (06 Marks)
		202		
		PA	RT – B	
5	a.	Choose the correct answers for the followin	g :	(04 Marks)
		i) Oscillator uses type of feedback		CY CI
		A) positive B) negative	C) both	D) None of these
		A) three RC circuits B) three LC circuits iii) The frequency of Hartley oscillator is f	cuits C) a T - type circuit	D) a π type circuit
		A) $\frac{1}{2\pi\sqrt{LC}}$ B) $\frac{1}{2\pi\sqrt{RC}}$	C) $\frac{1}{2\pi\sqrt{C}}$	D) $\frac{1}{2\pi LC}$
		iv) The upper and lower critical frequencie	s are sometimes called the	
		A) power frequenciesC) 6 dB points	B) half power freque D) None of these	ncies
	b.	Explain with a neat diagram, the working	of single stage RC coupled	d amplifiers with its
	C	frequency response.	olt in omnlifion	(08 Marks)
	d.	In a colpitts oscillator if the desired frague	ick in amplifier.	(04 Marks)
	ч.	C_{eq} if $C_1 = C_2 = 10$ picofarad.	ney is our KIIZ, determine	(04 Marke)
			2 of 3	(04 marks)

10ELN15/25

* * * * *

06CIP18/28

USN	Question Paper Version : B						
	First/Second Semester B.E Degree Examination, June / July 2013						
Jr	Constitution of India and Professional Ethics						
Y:	(COMMON TO ALL BRANCHES)						
Tim	[Max. Marks: 50						
and the	INSTRUCTIONS TO THE CANDIDATES						
1	Answer all the fifty questions, each question carries ONE mark .						
2	Use only Black ball point pen for writing / darkening the circles.						
3	For each question, after selecting your answer, darken the appropriate circle						
	corresponding to the same question number on the OMR sheet.						
4. Darkening two circles for the same question makes the answer invalid.							
5	Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited.						
1.	a) Legal b) Social c) Moral d) All of these						
2.	In Keshavananda Bharathi case (1973), the Supreme Court held that the Preamble? a) is a part of the Constitution b) is not a part of the Constitution c) is enforceable in a Court of law d) Sets out the goals of a socio – economic state.						
3.	Directive Principles are a) Directives in the nature of ideals of the state b) Directives influencing and shaping the policy of states c) Non – justiciable directives to the state d) All of these						
4.	Fundamental Rights are a guarantee against a) State action c) Both (a) and (b)b) Action by private individuals d) Emergency excesses						
5.	 Professional Autonomy' means a) Exercising independent and objective judgment b) Liberty to express independent view c) Liberty in selecting the work d) Independent body controlling profession 						
HIGH 6.	 Acceptable Risk' means a) Risk of harm equal to probability of producing benefits b) Risk which is the natural part of the process c) Inevitable risk d) Risk which cannot be avoided 						
7.	An Expert Testimony does not demanda) Consulting extensively with the lawyerc) Expert legal knowledgeb) Adequate time for thorough investigationd) Objective and unbiased demeanor.						
	-B1-						

06CIP18/28

	8.	Which of the following does not depict the attit a)Protest b) Reasonable care	ude towards responsibility? c) Good works d) Minimalist
	9.	is not the symptom of group thinking. a)Illusion of unanimity b) Mind guarding	c) Egocentric tendency d) Self - censorship
1. 1. 1. 1.	10.	Revealing confidential information means a) Breach of contract c) Misusing the truth	b) Criminal breach of trust d) Violation of patent right
	11.	Risk as a maximizing benefit is understood by _ a) Risk/benefit analysis c) Straight line analysis	b) Cost/benefit analysis d) Break – even analysis
	12.	The codes of ethics can be taken as guidelines b a) Overcome the work pressure c) Formulate the problem	by the engineers to b) Resolve the conflicts d) Escape from the responsibility
	13.	Which writ has been filed against Karunanidhi, comment on Setu samudram project? a) Prohibition b) Certiorari	Chief Minister of Tamilnadu with regard to his c) Quo - Warranto d) No such writ filed
	<u>14.</u>	Who is the first Chief Justice of India? a) Harlal .J. Kania b) B.K. Mukherjee	c) Patanjali Sasthri d) S.R. Das
	15.	During the discussions in Parliament, 'Guillotin a) Demands for Grants b) Finance bills	e' applies to c) Vote on account d) Appropriation Bill
	16.	Sarkaria Commission was appointed by the Gov a) Electoral reforms c) Centre – State relations	 b) Inter – state relations d) Tribal Development
	17.	One of the following is not included in the right a) Right to equality of wages c) Right not to be tortured	to personal liberty b) Right to free legal-aid d) Freedom from arrest
	18.	Every citizen of India has a right to contest a contest election is a) A Fundamental right c) A Fundamental duty	any election unless disqualified. The right to b) An ordinary civil right d) An important constitutional right
	19. ج ک	 A law making classification on the basis of place a) Violative of Article - 15 b) Not violative of Article - 15 c) Violative of Article - 15, read with Article -1 d) Violative of Article - 15, read with Article - 	e of residence is 4 14 and Article – 16(1).
0,	20.	Article -20-22 relate to the fundamental right available to a) Citizen only c) Natural persons as well as artificial persons	to life and personal liberty. These rights areb) Citizens and non – citizensd) All persons who have juristic personality
	21.	The Fundamental rights are a) Not enforceable c) Both justiciable and enforceable	b) Not justiciabled) Unamendable

06CIP18/28

	22.	 Article-14 guarantees equality before law and equal protection of laws to a) All the persons living within the territories of India b) All Indian citizens living in India c) Any person domiciled in India d) All persons natural as well as artificial
High GI	23. I	Doctrine of self – incrimination enacted in Article20(3) means that a) No citizen accused of an offence can be compelled to be a witness against himself b) No person accused of an offence can be compelled to be lead evidence against himself c) No person accused of an offence can be compelled to be a witness against himself d) No person accused of an offence can give evidence against himself
	24.	Article – 18 of constitution, prohibits the Indian citizen from acceptinga) Bribeb) Giftc) Any title from Foreign stated) All of the above
	25.	Article – 24 of Constitution prevents one of the followinga) Child labourb) Traffic in human beingsc) Transporting goodsd) Sale of goods
	26.	The Directive Principle of State Policy are a) Nonjusticiable b) Sometime justiciable c) Always justiciable d) justiciable
	27.	The powers of the High Court is vast when compared to the powers of the Supreme Court with regard to entertaining writs
	28.	The ideals of liberty, equality and fraternity enshrined in the Preamble of the Constitution were adopted under inspiration from a) The Russian Revolution c) The American Declaration of Independence d) The UN Charter
	29.	Traffic in Human beings means a) Vehicular traffic c) Illegal sale of Human organsb) Transportation of human beings d) None of these
	30.	The Indian Constitution is silent as to which of the following Directive principles of StatePolicy?a) Free legal aid to poorc) Adult Educationb) Equal pay for equal workd) Improving the standard of living of workers.
	<u>31.</u>	The Indian Union Legislature is known as a) Congressc) Parliamentd) Diet.
	32.5	Which amendment to the Indian Constitution is called as the Mini Constitution? a) 86 b) 73 c) 42 d) 74
1. Maria	33.	Writ of prohibition cannot be issued against the a) Judicial functions c) Legislative functionsb) Quasi Judicial functions d) Acts of lower courts.
	34.	Which one of the following is included in Freedom of Trade and Commerce?a) Business in intoxicantsb) Business in adulterated food stuffsc) Business in prize competitionsd) Business in medicinal drugs
	35.	Untouchability in associated with inequality. a) Religious b) Social c) Political d) Cultural. -R3-

						06CIP18/28			
	36.	Which article is conside a) 32	red as the soul of the In b) 33	diar c)	a Constitution? 34	d) 35.			
	37.	Which one of the follow	ving article under the In	ndia	n Constitution deal	s with protection of life			
J.		and personal literacy? a) 22	b) 23	c)	21	d) 14.			
Nr.	38.	The immediate hour after	er the question hour in the	he L	ok Sabha is called	OPN			
9	5,	a) Zero hour	b) Special hour	c)	Answer hour	d) None of these			
	39.	The greatest hall mark o a) Mandamus	f Personal liberty is b) Certiorari	c)	Quo - Warranto	d) Habeas corpus.			
	40.	Engineering Ethics is				X			
		a) A macro ethics		b)	Business ethics	B hasad on othics			
		c) A Freventive ethics		u)	A code of scientific	rules based on ethics			
	41.	Conflict of interest may a) Potential	be b) False	c)	Created 6914	d) Imaginary.			
	42.	'Minimalist view' means	S)		614				
		a) A concept of responsi	bility	b) d)	A ministerial view				
	10		C.	u)	Trone of these.				
	43.	A Fault tree is used to	- 11 ~ ×	b	Claim compensatio	n			
		c) Improve safety	Sec.	d)	None of these.	**			
	44 .	Which is a Directive Prin	nciple of State Policy?						
		a) Right against exploitation			b) Maternity relief				
		c) Protection against art	oltrary detention	a)	Promotion of Hindi				
	45.	When can the Parliamen	t discuss the conduct of	Hig h)	gh Court Judges?				
		c) In general debate		d)	None of these				
	46.	"A Money Bill Sintro	oduced in the council of	fstat	tes" – Article 109(1)			
		a) Shall be	b) Shall not be	c)	May be	d) Could be.			
	47.	"Quo – Warranto" mean	s		5	20			
		a) 'We order'		b)	'by what authority'	7.5			
		c) Nettiler of the above		u)	(a) and (b) together	7.			
	48.	The Governors powers d	o not include	b)	Military powers	ès.			
	S	c) Pardoning powers		d)	Emergency powers	0.0-			
20	49.	The total number of men	nbers of a State Legislat	tive	Assembly shall in r	no case be less than			
K S		a) 40	b) 60	c) {	80 0	l) 50			
	50.	A detention in which a re	egular court trail is held	and	the guilt of the det	enu established is			
		a) Illegal detention		b)	Punitive detention				
				u)	none of these.				
			also also also also also also also also						

p

-B4-

06CIV18/28 Question Paper Version : D USN First/Second Semester B.E Degree Examination, June/July 2013 **Environmental Studies** (COMMON TO ALL BRANCHES) Time: 2 hrs.] Max. Marks: 50 **INSTRUCTIONS TO THE CANDIDATES** Answer all the fifty questions, each question carries ONE mark. Use only Black ball point pen for writing / darkening the circles. 2. 3. For each question, after selecting your answer, darken the appropriate circle corresponding to the same question number on the OMR sheet. 4. Darkening two circles for the same question makes the answer invalid. 5. Damaging/overwriting, using whiteners on the OMR sheets are strictly prohibited. 1. The major environmental impact of agriculture is a) conversion of forest land to crop land b) conversion of grass – land to crop land c) planting trees in crop land d) both (a) & (b) 2. Organic farming is a farming without a) synthetic fertilizers b) pesticides c) green manures d) both (a) & (b) 3. Secondary sector of industries consumes large amount of a) fertilizers b) raw materials c) land d) none of these Gold occurs in 4. a) sedimentary deposits b) placer deposits c) hydrothermal deposits d) none of these 5. Service industry includes b) education a) insurance c) health care d) all of these 6. Advantage of road transport system is a) cost of vehicles is relatively less b) high relative speed of vehicles c) easily available in markets d) both (a) & (b) Indirect environmental effects of widespread use of automobiles are a) urban sprawl b) paving of vast areas of watershed c) alteration of runoff patterns d) all of these 8. EIA is used to a) establishing the environmental base line data b) impact identification c) (a) & (b) d) to identify alternate industries

06CIV18/28

06CIV18/28

÷	23.	One joule of energy is a a) 0.2389 calories	equal to b) 23.89 calories	c) 238.9 calories	d) 2.389 calories		
-	24.	Radiated energy can be a) medium of air	transferred in b) free space	c) solid medium	d) (a) & (b)		
Hi.	25.	Hydro-electric energy g a) earthquake	generation causes envir b) habitat loss	onmental problem suc c) deforestation	h as d) all of these		
	26.	Which solar system car a) flat plate collector c) parabolic through co	n be used to achieve ter llector	nperature of 1000 ⁰ C? b) parabolic dish coll d) none of these	lectors		
	27.	Heating of coal, in abse a) carbonization of coa c) coal liquefaction	ence of air to produce c l	oal gas is called b) coal gasification d) none of these	512		
	28.	One gram of Uranium I a) 100MW	U235 can give electrica b) 1000KW	ll energy equivalent to c) 1MW	d) 1000MW		
	29.	Hydrogen can be produ a) cracking of ammonia c) (a) & (b)	aced commercially by	b) electrolysis of wat d) gasification	er		
	30.	Temporary hardness of a) chloride hardness c) calcium hardness	water is due to	b) manganese hardness d) carbonate hardness			
	31.	Nitrate concentration m a) gastroenteritis b)	nore than 45mg/L leads mathenoglobenemia	to a disease called c) typhoid	d) none of these		
	32.	In water treatment, alur a) aeration	n is used for b) coagulation	c) filtration	d) disinfection		
	33.	The process of decomp a) reduction	osing organic waste in b) oxidation	the presence of air is c c) incineration	called d) pulverizing		
	34.	The organ of a baby us a) kidney	ually damaged from lea b) lungs	ad poisoning c) lever	d) heart		
	35.	Atmospheric pollutants a) troposphere	are largely present in b) stratosphere	c) mesosphere	d) all of these		
1	36.	Which of the following a) charcoal	is a source of benzpyr b) gasoline exhausts	ene? c) tobacco	d) all of these		
HIDI	37.	Main components of sr a) unsaturated hydrocar c) Sulphur compound	nog are rbons	b) NO _x d) All of these	N		
	38.	Petroleum based vehicl a) polynuclear hydroca c) aldehydes	es emit rbons	b) CO d) All of these			

06CIV18/28

2

39.	It is dangerous to leave the engine of a car running in a closed garage, because, it may cause poisoning due to							
	a) C	b) CO	c) SO ₂	d) CO ₂				
40 .	The cigarette smoke co a) phosgene	ntains carcinogenic con b) CO ₂	mpounds such as c) benzopyrene	d) both (a) & (b)				
41.	The major chemical spea) O_3	ecies in stratosphere are b) O ₂	e c) N ₂	d) All of these				
4.	Ionosphere consists of a a) NO ₂ ⁺	electrically charged par b) O ⁺	ticles of c) O_2^+	d) All of these				
43.	Concentration of pollut a) Bio-magnification	ants in successive tropl b) Bio-remediation	hic levels is known as c) Bio-accumulation	d) All of these				
44.	Ecological pyramids are a) pyramid of numbers	e studies of b) pyramid of energ	y c) a & b	d) none of these				
45.	Undernourished popula a) Asia & Pacific	tion is more in b) Europe	c) Australia	d) South America				
46.	Economic and social se a) Unemployment	curity is required agair b) Illness	c) Old age	d) All of these.				
47.	Employment security is a) Out-source c) Regulatory reforms	diminishing due to the	b) Informalization of economic activity d) All of these					
48.	Global atmospheric tem a) burning of fossil fuel c) soil erosion	nperature are likely to b	be increased due to b) water pollution d) none of these					
49.	Socio-economic hardships are caused due to a) Lack of labor law coverage b) Seasonal & temporary nature of occupation c) High labor mobility & casualization of labor d) All of these							
50.	Which of the followir matter?	ng components of the	environment are eff	ective transporters of				
10	a) atmosphere & hydros c) hydrosphere & lithos	phere	b) atmosphere & litho d) lithosphere & bios	phere				
		****		SA.				
				2				

USN]			10MAT21	
		See	cond	Semes	ter B	5.E. De	egree Exa	minati	on, June/Ju	ly 2013	
				En	gine	erin	g Mathe	emati	cs – II		
Tin	ne: 3	hrs.								Max. Marks:100	
Not	te: 1. 2. 3.	. Ansv . Ansv . Ansv	ver any ver all ver to a	v FIVE objectiv objective	full qi ve type ve type	uestions questio questio	s, choosing o ons only in C ns on sheets	at least to OMR she other th	vo from each p et page 5 of th an OMR will r	part. e answer booklet. not be valued.	
			0				PART – A		-0	5	
1	a.	Choc	se the	correct a	nswers	s for the	following :	i		(04 Marks)	
		i)	A diff	erential	equation	on of the	e first order	but of hig	gher degree, sol	lvable for y, has the	
			solution $A = F(x)$	n as	0			\mathbf{D}) $\mathbf{E}(\mathbf{r})$			
			C) $F(x)$	(y, c) =	0			$\frac{D}{F_1}$	$(x, y_1, y_2) = 0$ (x, y, c) F ₂ (x, y)	c) = 0	
		ii)	If $c^2 x^2$	+1 =	2cy is	the ger	eral solution	n of a dif	ferential equati	ion then its singular	
			solutio	n is	1	2		129	1	C	
		•••	A) y =	x		B) y =	-x	C) bo	th (A) and (B)	D) none of these	
		111)	The ge	neral so	lution	of the d	ifferential eq	uation p =	$\log (px - y)$ is		
		iv)	A) y= The di	= px + e ^p	1 equat	B) $y =$	$px - e^{p}$	C) $y =$	$= px - e^{c}$	D) $y = cx - e^{c}$	
		10)	A) p	increntia	ii cqua	B) $v \neq$	x = 2yp ca	C C	able for	D) all of these	
	b.	Solve	$e xvp^2$ -	$+ p(3x^2 -$	$-2v^{2}$)	-6xv =	0.	C) A		(05 Marks)	
	c.	Solve	v = p	$\sin p + c$	osp.	2		5		(05 Marks)	
	d.	Solve	$v^2 \log v$	v = xvn	$+ n^2$	$\langle \mathcal{O} \rangle$		15		(06 Marks)	
			, , 108	J MJP	· P ·			, (e		(00 Marks)	
2	a.	Choo	ose the	correct a	inswer	for the	following :			(04 Marks)	
		i)	$\frac{1}{f(D)}$	$(e^{3x}x^2) =$	-				R		
			A) 0 ³	× 1	w ²	\mathbf{D}) a^{3x}	12	()	2 1 3x	$D = \frac{1}{3x}$	
			A) C	f(D-3)	$\overline{3}$	B) C	$\overline{f(D+3)}^{X}$	C) X	$\overline{f(D-3)}^{e}$	D) $x \frac{f(D+3)}{f(D+3)}e$	
		ii)	The ro	ots of at	ixillary	equation	on of $(D^4 + 2)$	$D^3 - 5D^2$	-6D)y = 0 are	9.	
			A) –1,	-1, 2, -	-3	B) 0, -	-1, 2, -3	C) 0,	1, -2, 3	D) 0, -1, 2, 3	
		iii)	The pa	rticular	integra	al of (–E	$(1+2)^3y = 3e^2$	^{2x} is			
			A) $\frac{x^3}{3}$	$\frac{e^{2x}}{3}$		B) $\frac{x^3e}{2}$	2x	C) –	$\frac{x^3e^{2x}}{2}$	D) $-\frac{x^3e^{2x}}{6}$	
		iv)	If $\frac{dx}{dt}$.	-2y=0	$, \frac{dy}{dt}$	$-2\mathbf{x} = 0$	then y is a fi	unction of	f		
			A) e^{2t}	and e^{-2t}		B) e ^{2it}	and e^{-2it}	C) e ^t a	and e^{-2t}	D) none of these	
	b.	Solve	$(D^3 -$	$6D^2 + 1$	1D – 6)	$y = 2^{x} -$	$+\cos 2x$.			(05 Marks)	
	c.	Solve	$(D^2 -$	4D + 4)	$y = 8x^2$	$e^{2x} \sin 2$	2x .			(05 Marks)	
	d.	Solve	$\frac{dx}{dt} + \frac{dx}{dt}$	$\frac{dy}{dt} + 2x$	+ y = 0	$\frac{dy}{dt} + \frac{dy}{dt}$	5x + 3y = 0.			(06 Marks)	

10MAT21

3 a. Choose the correct answers for the following : (04 Marks)
i) The complementary function of
$$x^2y^x + 4xy^x + 2y = e^x$$
 is
 $A) c_1e^{-x} + c_2e^{-2x}$ B) $c_1(-x) + c_2(-2x)$ C) $c_1e^{-2} + c_2e^{2x}$ D) $\frac{c_1}{x} + \frac{c_2}{x^2}$
ii) If $y = u(x) \cdot 1 + v(x) \cdot e^{2x}$ is a particular integral of $y^x + y = \csc x$ in the method of variation of parameters then $v(x) = A$ x e^x B) e^{-2x} C) e^{2x} D) $-e^{x}$
iii) The roots of the auxillary equation of the transformed equation of :
 $(2x + 1)^2y^x - 2(2x + 1)y^t - 12y = 6x + 5$ are
A) a^{-x} B) $a_3, 1$ C) $12, -4$ D) none of these
iv) Indicial equation is related to
A) singular point D) none of these
b. Solve $(D^2 + 1)y = 7an x$ by method of variation of parameters. (05 Marks)
c) Solve $(D^2 + 1)y = 7an x$ by method of variation of parameters. (05 Marks)
d. Solve $(1 + x^2)y^x + xy^2 - y = 0$ in series solution. (06 Marks)
d. Solve $(1 + x^2)y^x + xy^2 - y = 0$ in series solution. (06 Marks)
i) $z = (x - a)^2 + (y - b)^2$, a and b are arbitrary constants, is a solution of
 $A) z = 2p^2 + 2a^2$ B) $4z = p^2 + q^2$ C) $p = 2(x - a)$ D) $q = 2(y - b)$
ii) For $z = (x + a)(x + b), z = 0$ is a
A) singular solution D) complete solution
iii) Suitable set of multipliers to solve $(y^2 + z^2)p + xyq = zx$.
A) $0, 1, 1$ B) $x, -y = z$ C) $1, -\frac{y}{x}, -\frac{x}{x}$ D) all of these
iv) Taking $Z = X(x) \cdot Y(y)$ is a solution of a partial differential equation then this
procedure is called
A) separation of variables D) Partial separation of variables
b. Form a partial differential equation by eliminating arbitrary function from the relation
 $z = t\left(\frac{Xy}{z}\right)^2$. (05 Marks)
d. Solve $\frac{\partial^2 x^2}{\partial x^2} - 2\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} = 0$ by the method of separation of variables. (06 Marks)
i) $\int_{0}^{1-1} \frac{1}{0}(x^2 - y^2)dxdy = (4x - B)$ D) and of these
i) $\int_{0}^{1-1} \frac{1}{0}(x^2 - y^2)dxdy = (4x - B)$ D) none of these

2 of 4

5 a. ii)
$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{2} \int_{0}^{2} dz dy dx =$$

A) 3 B) 2 C) 1 D) none of these
iii)
$$\int_{0}^{1} \left[\log \left[\frac{1}{x} \right] \right]^{\frac{1}{2}} dx =$$

A) $\Gamma \left(\frac{1}{2} \right)$ B) $\Gamma \left(\frac{3}{2} \right)$ C) $\Gamma \left(\frac{5}{2} \right)$ D) none of these
iv)
$$\int_{0}^{\pi/2} cos^{m} x dx =$$

A) $\frac{1}{2} \beta \left(\frac{m-1}{2}, \frac{1}{2} \right)$ B) $\beta \left(\frac{m+1}{2}, \frac{1}{2} \right)$ C) $\frac{1}{2} \beta \left(\frac{m+1}{2}, \frac{1}{2} \right)$ D) $2\beta \left(\frac{m+1}{2}, \frac{1}{2} \right)$
b. Change into polar coordinates and evaluate $\int_{0}^{\pi/2} e^{-(x^{2}x^{2})^{2}} dy dx$. (05 Marks)
c. Evaluate $\int_{-\infty}^{0} \int_{-\infty}^{0} \int_{-\infty}^{1} (x^{2} + y^{2} + z^{2}) dz dy dx$. (05 Marks)
d. Prove that $\beta(m, n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. (06 Marks)
6 a. Choose the correct answers for the following : (04 Marks)
i) Which theorem gives a relation between surface integral and volume integral?
A) Green's B) Stoke's C) Divergence D) None of these
ii) If c is $x + y = 1$ from (0, 1) to (1, 1) then $\int_{C} (y^{2} dx + x^{2} dy) =$
A) 0 B) 1 C) 2 D) 3
iii) The work done by the force $\overline{F} = yI + xJ + zK$ moves a particle from (0, 0, 0) to
(2, 1, 1) along the curve $x + t^{2} - y - t, z = 0$ is
A) $3t^{2}$ B) 0 C) 1 D) none of these
iv) If S is any closed surface enclosing the volume, V then by Divergence theorem, the
value of $\int \overline{R} \cdot dS$ is
A) V B) $2V$ C) $3V$ D) none of these
b. Use Green's theorem to evaluate $\int_{C} [(y - \sin x) dx + \cos x dy]$ where c is enclosed by $y = 0$,
 $x = \frac{\pi}{2}, y = \frac{2}{\pi} x$. (05 Marks)
c. Use Stoke's theorem to evaluate $\int_{C} [vr |\overline{F} \cdot d\overline{S}$ where $\overline{F} = yI + (x - 2xz)J - xyK$ and S is the
surface of the sphere $x^{2}y^{2} + z^{2} = a^{2}$ above the xy-plane. (05 Marks)
d. By transforming to a triple integral, evaluate $\int_{0}^{1} x^{3} dy dx + x^{2} dx dx^{3} + x^{2} dx dx^{3}$ (06 Marks)

2

10MAT21

7 a. Choose the correct answers for the following :
() L(2 cosh 20) =
A)
$$\frac{4}{s^2 - 4}$$
 B) $\frac{4s}{s^2 - 4}$ C) $\frac{2s}{s^2 - 4}$ D) none of these
ii) $I\left(\frac{\sin t}{t}\right) =$
A) $c^{1} s$ B) $\frac{1}{s^2 + 1}$ C) $tan^{-1} s$ D) $cot^{-1}(s - 1)$
iii) L($\Gamma'(t)$) =
A) $s(t) - f(0)$ B) $sf'(s) - f(0)$ C) $f(s) - f(0)$ D) none of these
iv) $I(sin 2t, \delta(t - 2)) =$
A) $s^{2t} \sin 4$ B) $c^{2s} \sin 2$ C) $c^{4s} \sin 2$ D) $e^{24} \sin 4$
b. Prove that $I_{1}(t^{*}) = \frac{n!}{s^{n+1}}$ if n is a positive integer.
(05 Marks)
c. Find $I\left(\frac{e^{-t} \sin t}{t}\right)$ and hence find $\int_{0}^{t} \frac{e^{-t} \sin t}{t} dt$.
(05 Marks)
d. Express: $f(t) = t - 1, \ 1 < t < 2$
 $= -t - 3, \ 2 < t < 3$
 $= 0, \ 0$ otherwise
in terms of unit step function and hence find $I_{0}(t)$.
(06 Marks)
8 a. Choose the correct answers for the following:
() $I^{-1}(s^{-t/2}) =$
A) $\frac{2t^{3/2}}{\sqrt{\pi}}$ B) $\frac{4t^{3/2}}{\sqrt{\pi}}$ C) $\frac{8t^{3/2}}{15\sqrt{\pi}}$ D) none of these
i) $I^{-1}(s^{-t/2}) =$
A) $\frac{2t^{3/2}}{\sqrt{\pi}}$ B) $\frac{4t^{3/2}}{\sqrt{\pi}}$ C) $\frac{8t^{3/2}}{15\sqrt{\pi}}$ D) none of these
i) $I^{-1}(\frac{1}{s^{+}+5}) =$
A) $\frac{1}{\sqrt{5}}\sin\sqrt{5t}$ C) $\frac{1}{\sqrt{5}}\sin\sqrt{5t}$ D) $\sin\sqrt{5t}$
ii) $I^{-1}(\frac{1}{s^{+}+5}) =$
A) $t(t)$ B) $\frac{1}{\sqrt{5}}\sin\sqrt{5t}$ C) $\frac{1}{\sqrt{5}}\sin\sqrt{5t}$ D) $\sin\sqrt{5t}$
ii) $I^{-1}\left[\frac{1}{4s^{2}-9}\right]$ by using convolution theorem.
(05 Marks)
c. Find $I^{-1}\left[\frac{1}{4s^{2}-9}\right]$ by using convolution theorem.
(05 Marks)
c. Find $I^{-1}\left[\frac{1}{4s^{2}-9}\right]$ by using convolution theorem.
(05 Marks)
c. Find $I^{-1}\left[\frac{1}{4s^{2}-9}\right]$ by using convolution theorem.
(05 Marks)
c. Find $I^{-1}\left[\frac{1}{4s^{2}-9}\right]$ by using convolution theorem.
(05 Marks)
c. Find $I^{-1}\left[\frac{1}{4s^{2}-9}\right]$ by using convolution theorem.
(06 Marks)
c. We by using Laplace transformation $y^{*} + 2y^{*} - y^{*} - 2y = 0$ where $y = 1, \frac{dy}{dt} = 2 = \frac{d^{3}y}{dt^{2}}$ at $t = 0.$ (06 Marks)